Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 919: 170808, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38336046

RESUMEN

Catastrophic fish death events are increasing in frequency and severity globally. A series of major recent fish deaths in the semi-arid lower Darling-Baaka river system (LDBR) of Australia are emblematic of these issues with tens of millions of native fish perishing. In 2018-2019 there was a major death event for Australia's largest freshwater fish, Murray cod (Maccullochella peelii). To aid the recovery and guide restoration activities of local Murray cod populations, it is essential to gather information on the mating strategies and effective population size following the fish death event. After the fish deaths, we collected larvae during the 2020 and 2021 breeding seasons and used single nucleotide polymorphisms (SNPs) to provide insight mating strategies and to estimate effective population size. Larvae were detected in both years along the entire length of the LDBR. Sixteen percent of the inferred breeding individuals were found to contribute to multiple pairings, confirming a complex and polygamous mating system. A high frequency of polygamy was evident both within and between years with 100 % polygamy identified among parents that produced offspring in both 2020 and 2021 and 95 % polygamy identified among parents involved in multiple spawning events within years. Post-larval Murray cod samples collected between 2016 and 2021 were co-analysed to further inform kinship patterns. Again, monogamy was rare with no confirmed cases of the same male-female pair contributing to multiple breeding events within or between seasons. Effective population size based on Murray cod collected after the fish death event was estimated at 721.6 (CI 471-1486), though this has likely declined following a subsequent catastrophic fish death event in the LDBR in March 2023. Our data provide insight into the variability of Murray cod mating strategies, and we anticipate that this knowledge will assist in planning conservation actions to ultimately help recover a species in crisis.


Asunto(s)
Matrimonio , Perciformes , Animales , Femenino , Masculino , Peces , Perciformes/genética , Agua Dulce , Australia
2.
Environ Manage ; 73(1): 102-114, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37452853

RESUMEN

A proliferation of irrigation infrastructure throughout the Mekong River has impacted the ability of certain fish species to migrate to fulfil their lifecycle. In response, fishways, a type of fish-friendly irrigation structure, have been developed to provide passage for these fish. In recent years, several guidelines documents providing guidance on fish-friendly irrigation structures and their construction have been published. The development process from guideline inception to publication is unclear, while their purpose, audience, and contribution to fishway practice are vague. This study is the first to review the development of three fish-friendly guideline documents, using structural criteria analysis, combined with qualitative data from 27 key informant interviews. It aimed to understand document elements such as purpose, audience, scope, and framing. The results showed reviewed guideline utility and impact could be improved by attention to five key aspects, namely: definition of target audience; engagement of target audience in guideline design; definition of guideline scope; specificity of recommendations; and evaluation. Attention to these 5 aspects may result in guidelines that are perceived as more useful by their target audience and have greater impact on water management practice.


Asunto(s)
Peces , Ríos , Animales
3.
Conserv Physiol ; 10(1): coac017, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35492415

RESUMEN

The global prevalence of pumped-storage hydropower (PSH) is expected to grow exponentially as countries transition to renewable energy sources. Compared to conventional hydropower, little is currently known regarding PSH impacts on aquatic biota. This study estimated the survival of five life stages (egg, two larval stages, juvenile and adult) of redfin (European) perch (Perca fluviatilis) following passage through a PSH facility during the pumping phase. This was achieved by simulating the individual stressors expected to occur during passage through a 2000-MW PSH facility using laboratory-simulated (shear strain and extreme compression) and modelling (blade strike, BS) approaches. Our results indicate that redfin could survive the shear, pressure and BS stressors expected within the PSH facility, but impacts varied among life stages. Juvenile survival was >70% across all shear strain rates, while the survival of eggs and larvae declined markedly as strain rate increased. All life stages had high survival when exposed to rapid compression and BS. The high survival of redfin to the stressors tested suggests the PSH facility could facilitate the passage of redfin during the pumping phase from the lower to the higher elevation reservoir. This outcome would be welcomed in situations where the species is native, but could have adverse implications for the conservation of native biota where the species is considered a pest.

4.
Environ Manage ; 67(2): 277-290, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33399938

RESUMEN

Globally, many river systems are under stress due to overconsumption of water. Governments have responded with programmes to deliver environmental water to improve environmental outcomes. Although such programmes are essential, they may not be sufficient to achieve all desired environmental outcomes. The benefits of environmental water allocation may be improved using 'complementary measures', which are non-flow-based actions, such as infrastructure works, vegetation management and pest control. The value of complementary measures is recognised globally, but their ecological benefits are rarely well understood, either because there is limited experience with their application, or the importance of context- and location-specific factors make it difficult to generalise benefits. In this study, we developed an approach to evaluate complementary measures at different levels of detail as a mechanism to aid decision-making. For systems that require a rapid, high-level evaluation, we propose a score-based multi-criteria benefit assessment module. If more ecological detail is necessary, we outline a method based on conceptual models, expert elicitation and probability assessment. These results are used to populate a cumulative benefit assessment tool. The tool evaluates the benefits of proposed measures in the wider context by including variables such as flow, dependence on ongoing maintenance and additional ecological values. We illustrate our approach through application to the Murray-Darling Basin, Australia. As many water recovery programmes mature into their evaluation phases, there is an increasing need to evaluate the ecological benefits of including complementary measures in the toolkit available to policy makers.


Asunto(s)
Conservación de los Recursos Naturales , Ríos , Australia , Modelos Teóricos
5.
J Fish Biol ; 97(6): 1632-1643, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32783221

RESUMEN

Dam construction is a major driver of ecological change in freshwater ecosystems. Fish populations have been shown to diverge in response to different flow velocity habitats, yet adaptations of fish populations to river and reservoir habitats created by dams remains poorly understood. We aimed to evaluate divergence of morphological traits and prolonged swimming speed performance between lotic and lentic populations of Australian smelt Retropinna semoni and quantify the relationship between prolonged swimming speed performance and morphology. Prolonged swimming speed performance was assessed for 15 individuals from each of three river and two reservoir populations of R. semoni using the critical swimming speed test (Ucrit ). Body shape was characterized using geometric morphometrics, which was combined with fin aspect ratios and standard length to assess morphological divergence among the five populations. Best subsets model-selection was used to identify the morphological traits that best explain Ucrit variation among individuals. Our results indicate R. semoni from river populations had significantly higher prolonged swimming speed performance (Ucrit = 46.61 ± 0.98 cm s-1 ) than reservoir conspecifics (Ucrit = 35.57 ± 0.83 cm s-1 ; F1,74 = 58.624, Z = 35.938, P < 0.001). Similarly, R. semoni sampled from river populations had significantly higher fin aspect ratios (ARcaudal = 1.71 ± 0.04 and 1.29 ± 0.02 respectively; F(1,74) = 56.247, Z = 40.107, P < 0.001; ARpectoral = 1.85 ± 0.03 and 1.33 ± 0.02 respectively; F(1,74) = 7.156, Z = 4.055, P < 0.01). Best-subset analyses revealed Ucrit was most strongly correlated with pectoral and caudal fin aspect ratios (R2 adj = 0.973, AICc = 41.54). Body shape, however, was subject to a three-way interaction among population, habitat and sex effects (F3,74 = 1.038. Z = 1.982; P < 0.05). Thus sexual dimorphism formed a significant component of unique and complex variation in body shape among populations from different habitat types. This study revealed profound effects of human-altered flow environments on locomotor morphology and its functional link to changes in swimming performance of a common freshwater fish. While past studies have indicated body shape may be an important axis for divergence between lotic and lentic populations of several freshwater fishes, fin aspect ratios were the most important predictor of swimming speed in our study. Differences in body morphology here were inconsistent between river and reservoir populations, suggesting this aspect of phenotype may be more strongly influenced by other factors such as predation and sexual dimorphism.


Asunto(s)
Ecosistema , Osmeriformes/anatomía & histología , Osmeriformes/fisiología , Somatotipos/fisiología , Natación/fisiología , Adaptación Fisiológica , Animales , Australia , Fenotipo , Ríos , Factores Sexuales , Cola (estructura animal)/anatomía & histología , Movimientos del Agua
6.
Glob Chang Biol ; 26(10): 5345-5350, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32677160

RESUMEN

The consequences of the 2019-2020 bushfires in Australia were also devastating for the aquatic biota. Following abnormal rainfall events in burnt areas, widespread mortality events including fish and invertebrates were recorded in estuarine and freshwater systems. Such negative impacts on aquatic resources highlight the need to include these ecosystems in bushfire recovery plans. Management should prioritise catchments at higher risks of further negative impacts and research must be conducted to understand the efficacy of actions post-fire.


Asunto(s)
Ecosistema , Incendios , Australia , Biota , Agua Dulce
7.
PLoS One ; 13(6): e0198972, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29883481

RESUMEN

The allocation of time and energy to different behaviours can impact survival and fitness, and ultimately influence population dynamics. Intrinsically, the rate at which animals expend energy is a key component in understanding how they interact with surrounding environments. Activity, derived through locomotion and basic metabolism, represents the principal energy cost for most animals, although it is rarely quantified in the field. We examined some abiotic drivers of variability in locomotor activity of a free-ranging freshwater predatory fish, Murray cod (Maccullochella peelii), for six months using tri-axial accelerometers. Murray cod (n = 20) occupied discrete river reaches and generally exhibited small-scale movements (<5 km). Activity was highest during crepuscular and nocturnal periods when water temperatures were warmest (19-30°C; January-March). As water temperatures cooled (9-21°C; April-June) Murray cod were active throughout the full diel cycle and dormant periods were rarely observed. Light level, water temperature and river discharge all had a significant, non-linear effect on activity. Activity peaked during low light levels, at water temperatures of ~20°C, and at discharge rates of ~400 ML d-1. The temporal changes observed in the behaviour of Murray cod likely reflect the complex interactions between physiological requirements and prey resource behaviour and availability in driving activity, and highlight the importance of empirical field data to inform bioenergetics models.


Asunto(s)
Metabolismo Energético/fisiología , Gadiformes/fisiología , Locomoción/fisiología , Estrés Fisiológico/fisiología , Animales , Luz , Ríos , Temperatura
9.
Biol Open ; 5(6): 786-93, 2016 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-27230649

RESUMEN

Egg and larval fish that drift downstream are likely to encounter river infrastructure and consequently rapid decompression, which may result in significant injury. Pressure-related injury (or barotrauma) has been shown in juvenile fishes when pressure falls sufficiently below that at which the fish has acclimated. There is a presumption that eggs and larvae may be at least as, if not more, susceptible to barotrauma injury because they are far less-developed and more fragile than juveniles, but studies to date report inconsistent results and none have considered the relationship between pressure change and barotrauma over a sufficiently broad range of pressure changes to enable tolerances to be properly determined. To address this, we exposed eggs and larvae of three physoclistic species to rapid decompression in a barometric chamber over a broad range of discrete pressure changes. Eggs, but not larvae, were unaffected by all levels of decompression tested. At exposure pressures below ∼40 kPa, or ∼40% of surface pressure, swim bladder deflation occurred in all species and internal haemorrhage was observed in one species. None of these injuries killed the fish within 24 h, but subsequent mortality cannot be excluded. Consequently, if larval drift is expected where river infrastructure is present, adopting design or operational features which maintain exposure pressures at 40% or more of the pressure to which drifting larvae are acclimated may afford greater protection for resident fishes.

10.
PLoS One ; 8(6): e67026, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23818975

RESUMEN

Fish screens can help prevent the entrainment or injury of fish at irrigation diversions, but only when designed appropriately. Design criteria cannot simply be transferred between sites or pump systems and need to be developed using an evidence-based approach with the needs of local species in mind. Laboratory testing is typically used to quantify fish responses at intake screens, but often limits the number of species that can studied and creates artificial conditions not directly applicable to screens in the wild. In this study a field-based approach was used to assess the appropriateness of different screen design attributes for the protection of a lowland river fish assemblage at an experimental irrigation pump. Direct netting of entrained fish was used along with sonar technology to quantify the probability of screen contact for a Murray-Darling Basin (Australia) fish species. Two approach velocities (0.1 and 0.5 m.sec(-1)) and different sizes of woven mesh (5, 10 and 20 mm) were evaluated. Smaller fish (<150 mm) in the assemblage were significantly more susceptible to entrainment and screen contact, especially at higher approach velocities. Mesh size appeared to have little impact on screen contact and entrainment, suggesting that approach velocity rather than mesh size is likely to be the primary consideration when developing screens. Until the effects of screen contacts on injury and survival of these species are better understood, it is recommended that approach velocities not exceed 0.1 m.sec(-1) when the desire is to protect the largest range of species and size classes for lowland river fish assemblages in the Murray-Darling Basin. The field method tested proved to be a useful approach that could compliment laboratory studies to refine fish screen design and facilitate field validation.


Asunto(s)
Riego Agrícola/métodos , Explotaciones Pesqueras/métodos , Peces/fisiología , Ríos , Riego Agrícola/instrumentación , Animales , Australia , Tamaño Corporal/fisiología , Conservación de los Recursos Naturales/métodos , Ecosistema , Explotaciones Pesqueras/instrumentación , Peces/clasificación , Geografía , Especificidad de la Especie
11.
Am Nat ; 181(3): 331-43, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23448883

RESUMEN

In resource-limited populations, an increase in average body size can occur only with a decline in abundance. This is known as self-thinning, and the decline in abundance in food-limited populations is considered proportional to the scaling of metabolism with body mass. This popular hypothesis may be inaccurate, because self-thinning populations can also experience density-dependent competition, which could alter their energy use beyond the predictions of metabolic scaling. This study tested whether density-dependent competition has an energetic role in self-thinning, by manipulating the abundance of the fish Macquaria novemaculeata and tank size to partition the effects of competition from metabolic scaling. We found that self-thinning can be density dependent and that changes in intraspecific competition may be more influential than metabolic scaling on self-thinning relationships. The energetic mechanism we propose is that density-dependent competition causes variation in the allocation of energy to growth, which alters the energetic efficiency of self-thinning cohorts. The implication is that food-limited cohorts and populations with competitive strategies that encourage fast-growing individuals will have less body mass at equilibrium and higher mortality rates. This finding sheds light on the processes structuring populations and can be used to explain inconsistencies in the mass-abundance scaling of assemblages and communities (the energetic-equivalence rule).


Asunto(s)
Tamaño Corporal/fisiología , Conducta Competitiva/fisiología , Metabolismo Energético/fisiología , Modelos Biológicos , Perciformes/crecimiento & desarrollo , Análisis de Varianza , Animales , Densidad de Población , Dinámica Poblacional
12.
Conserv Physiol ; 1(1): cot019, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-27293603

RESUMEN

Techniques were developed to determine which life stages of fish are vulnerable to barotrauma from expansion of internal gases during decompression. Eggs, larvae, and juvenile hatchery-reared white sturgeon (Acipenser transmontanus; up to 91 days post hatch; d.p.h.) were decompressed to assess vulnerability to barotrauma and identify initial swim bladder inflation. Barotrauma-related injury and mortality were first observed 9 d.p.h., on the same day as initial exogenous feeding. However, barotrauma-related injury did not occur again until swim bladder inflation 75 d.p.h. (visible at necropsy and on radiographs). Swim bladder inflation was not consistent among individuals, with only 44% being inflated 91 d.p.h. Additionally, swim bladder inflation did not appear to be size dependent among fish ranging in total length from 61 to 153 mm at 91 d.p.h. The use of a combination of decompression tests and radiography was validated as a method to determine initial swim bladder inflation and vulnerability to barotrauma. Extending these techniques to other species and life-history stages would help to determine the susceptibility of fish to hydro turbine passage and aid in fish conservation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...